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Asymmetric wave-stress tensors and wave spin 

By W. L. JONES 
Department of Physics, University of Canterbury, Christchurch, New Zealand 

(Received 26 January 1973) 

Linearized wave-stress tensors derived from Hamilton’s variational principle 
may be asymmetric. If interpreted as momentum fluxes, they would lead to 
lack of conservation of orbital angular momentum. It is shown that changes in 
internal angular momentum or spin of waves and torque coupling to external 
fields can adequately provide conservation of total angular momentum in such 
cases, Examples are given for acoustic, internal gravity, Rossby and plasma 
waves. 

1. Introduction 
One of the standard techniques of both classical and quantum field theory 

makes use of Hamilton’s variational principle to derive conservation equations 
for an energy-momentum tensor. This tensor is described in terms of the field 
variables @ and Lagrangian density of the system. The components of this 
tensor are identified as energy and momentum densities and fluxes; momentum 
fluxes are equivalent to the negative of a stress tensor. This identification is made 
by equating the integral of energy density over the system with the system Hamil- 
tonian; identification of momentum components is not so clear. Both identifica- 
tions are complicated by the fact that the canonical energy-momentum tensor so 
derived is unique only to within a divergence. 

The variational approach may also be applied to linearized wave theory, using 
a Lagrangian quadratic in wave perturbations. The Euler-Lagrange equations 
are then the linearized equations for the system, while the energy-momentum 
equations describe the behaviour of ‘wave energy’ and ‘wave momentum’, 
which are quantities quadratic in the perturbations. In  view of the fact that the 
quadratic ‘wave Lagrangian density’ is only part of the total Lagrangian density, 
as well as the original lack of uniqueness, identification of wave energy and 
momentum with physical energy and momentum is rather tenuous (cf. Morse & 
Feshbach 1953; Sturrock 1961, 1962; Bretherton & Garrett 1968; Jones 1971). 
It may be that the best identifications can be made by post hoc considerations of 
wave energy-momentum tensor components as they are derived for special 
cases. 

We are particularly concerned with spatial components of the wave energy- 
momentum tensor, which we shall call the wave stress tensor. This stress tensor 
appears in source terms forwave energyinshearingflow (Garrett 1968; Bretherton 
& Garrett 1968)’ as well as in equations for wave momentum. Bretherton (1969) 
has derived componentsof this tensor as the vertical flux of horizontal momentum 
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in rotating fluids. The wave-stress tensor forms a part of, thoughnot necessarily all 
of, the radiation stress tensor defined for acoustic waves (Brillouin 1964) and 
water waves (Longuet-Higgins &, Stewart 1969). 

One argument made against the wave-stress tensor as a true stress tensor 
is that it is frequentlynot symmetric; if it were then equated to a negative momen- 
tum flux it would violate conservation of angular momentum. For example, 
Xturrock (1961, 1962) finds that wave momentum density equals wave-energy 
density multiplied by k/w, where k is the wavenumber vector and 0)  the wave 
frequency. Wave momentum flux equals wave momentum density multiplied 
by group velocity. If phase and group velocities are not collinear, and if we 
interpret wave momentum density as a true momentum density, then the motion 
of the packet will appear to change the angular momentum of the system. 

The argument for symmetry in stress tensors is valid for non-polar materials; 
it does not hold for polar materials that have an internal angular momentum or 
spin which can be coupled with orbital angular momentum or moment of linear 
momentum (McLennan 1966). We shall show that, on averaging over a wave in 
non-polar materials, one may obtain a spin-like quantity, quadratic in the wave 
perturbation variables. The conservation equation for this quantity has two 
source terms. The first is coupling to orbital angular momentum; the second is 
coupling through torque terms to external fields. 

Through consideration of wave spin we can make an asymmetric wave stress 
tensor consistent with conservation of angular momentum. While the wave 
changes the orbital angular momentum of the medium, it also exerts a torque 
on an external body (the earth for internal gravity waves) or field (the zero-order 
magnetic field for magneto-acoustic and plasma waves) or changes its own inter- 
nal angular momentum (for obliquely propagating Rossby waves on a /?-plane). 

In $ 2  we review the classical results for linear and angular momentum in polar 
materials, first by direct arguments and then from the variational point of view. 
In$§ 3-5 the results are applied to several wavesof geophysical and fluid-dynamic 
interest. 

2. Linear and angular momentum 
We begin by defining the following scalar and vector and tensor components: 

p = density, 
r m  = m component of the position vector 
v m  = m component of velocity (that is, of momentum density divided by mass 

F m  = m component of external or body force 
density) 

T m n  = stress tensor, force in the m direction per unit area normal to the n axis 
Rmn = spin or internal angular momentum corresponding to rotation from the 

C m n  = external body torque acting to produce rotation in m-n sense 
m axis to the n axis 

Mmng = couple stress tensor, producing an m-n torque per unit area normal to 
the q axis 
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The stress tensor and couple stress tensor are respectively the negatives of 
momentum flux and spin flux. 

The differential equation for linear momentum is 

aT"" + Fm, 
a 
Z (PV" )  = 

while the equation for angular momentum is 

a a 
at axq 

)] = - [Mmnp + (PTnq- F T m g ) ]  - [Rmn + p(rmwn - rnvm 

+ Gmn -I- rmFn - rnFm. (2) 

In  (1) the stress tensor includes Reynolds as well as material stresses. The left- 
hand side of (2) describes the rate of change of two kinds of angular momentum; 
the first is spin or internal angular momentum, the second is the moment of linear 
momentum. The first term on the right-hand side is the divergence of the total 
couple stress, consisting of the couple stress tensor and the moment of the linear 
stress tensor. The final terms are the body torque and the moment of the body 
force. 

Equation (2) may be rewritten with the aid of (1) to give 

aRmnlat = aMmnq laxq + Trim - Tm" + G"". 

T m n  - Trim = 0, 

i.e. that the stress tensor is symmetric. This is not true for a polar material, 
where asymmetry in Tmn may be balanced by body torques, time variation in 
spin density or divergence of the couple stress tensor or spin flux. As the Reynold 
stress terms -pvmvn, are symmetric, they obviously cancel in (3). 

If one has a Lagrangian density L, which is a function of field variables q5i 

and their derivatives, one can also derive conservation equations for energy and 
both linear and angular momentum from Hamilton's variational principle. We 
shall use Greek indices if quantities refer to either time or space, Latin indices if 
they are spatial co-ordinatesandt if timeisspecifically meant. As we deal withnon- 
relativistic Cartesian co-ordinates, no distinction will be made between contra- 
variant and covariant indices. Repeated indices imply summation and 

(3) 

(4) 

In  a non-polar material Rmn, Nmng and Gmn are all zero. This requires that 

q5; = a p p x p .  ( 5 )  

ss Ld4x = 0. (6) 

The variational principle states that 

By choosing specific forms of variation one can derive the Euler-Lagrange equa- 
tions (Akhiezer & Berestetskii 1965) 

and the energy-momentum equations 

aTfiP/&u = 0, 

where T P Y  = $;(aL/a@g) - s,, L. 

(7) 
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The Euler-Lagrange equations form the governing equations for the system. 
If TM is integrated over all space, the integral equals the system Hamiltonian; 
hence Ttt is identified as an energy density. From this conclusion one identifies 
- Tnt as momentum density, Ttm as energy flux, - Tmn as momentum flux and 
T m n  as a stress tensor. Equation (8) holds only for closed systems, where L has 
no explicit dependence on x p .  

It is usual to point out that T p Y  is not unique, as L is not unique. If fpv" is any 
third-order tensor antisymmetric in its last two indices, then 

0 

T P  TW + a p q p x ~  (10) 

aTP.laxv = 0. (11) 

also satisfies the conservation equation 
0 

This principle is 0ften:employed to obtain a symmetric energy-momentum tensor 

TW from the canonical tensor TPv. 
If we take variations in the form of infinitesimal rotations, we obtain a con- 

servation equation for angular momentum. Let 

0 

MPv" + x'TP - X P T V U  + SP"', (12) 

where 

Ipvii are the infinitesimal operators of the Lorentz group. For our purposes 

I,'vz'j = S,,f SVf  - spj s,i. (14) 

Then, from the variational principle, one can show that 

a n w q a X ~  = 0. (15) 

MF"" is identified as the angular momentum four-tensor, with M p V t  as density 
and M p v m  as flux. Total angular momentum is thus conserved. 

We shall be concerned only with spatial angular momentum Mmn". Total 
angular momentum density consists of two parts. Orbital angular momentum 
density 

xnTmt - pTnt  (16) 

is the moment of linear momentum density. Smnt is an internal angular 
momentum density or spin density, which can be identifled with Rmn. 

Equations (8) and (15) would be equivalent to (1) and ( 2 )  for a closed system 
with no external body forces and torques. In  the presence of such external forcing, 
(8) and (15) would have non-zero right-hand sides. These would contribute to 
an equation for spin conservation. 

Let us write an equation for conservation of spin, by differentiating (13) and 
substituting (9) : 

afJmn"/aXu = - T m n  + T n m  + G m n ,  (17) 

where 
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Gmn must be the body torque experienced by an open system, by comparison of 
(3) and (7). In  a closed system Gmnis zero, since from (8), (12) and (15) for a closed 
system 

a,gmngpxg = - ~ m n  + p m .  (19) 

The variational principle is applied to linearized wave systems by using a, 
Lagrangian density that is quadratic in perturbation quantities. (See Morse 
& Feshbach (1953) and Jones (1971) for reviews.) The Euler-Lagrange equations 
are then the linearized perturbation equations for the system. TFV and Bmna are 
then quadratic in the perturbations. Interpretation of these quantities as com- 
ponents of total energy and momentum densities and fluxes is now doubly dif6- 
cult. Not only does the original lack of uniqueness persist, but the quadratic 
Lagrangian is only a part of the total system Lagrangian and conclusions about 
wave energy and momentum are as approximate as the linearized perturbation 
equations. (We shall use the word 'wave' as an adjective, denoting 'quadratic 
in perturbation variables'.) 

In  view of these difficulties, post hoc identification of the various components 
is highly desirable. We shall consider our results for a number of waves in the 
following sections. 

3. Stratified fluid waves 

on the basis of an analysis by Eckert (1963) : 
We shall begin by using a wave Lagrangian density derived by Hayes (1970) 

This expression is valid for compressible stratified fluids in a gravitational field, 
and with no mean fluid motion. Thus acoustic and internal gravity waves are 
described. We define p = mean pressure, p = mean density, a = sound speed, 
5 = perturbation displacement and @ = gravitational potential. With no mean 
motion, and gravity acting in the negative-z direction 

appz = -gp, g = aQla2. (21L (22) 

(23) 

Equation (20) may be written as 
L = t P W -  B P ~ ' ~ ~ t - ~ P ~ ~ ~ ~ z + t 9 ~ ~ ~ s , ~ s ~ .  aP 

Eulerian perturbations p' and p' in density and pressure are given by 

and 

The Eulerian-Lagrange equations are then simply 

p& + ap'pxr + gp's,, = 0 ,  

which are readily seen to be the perturbation equations of motion for this system. 
The wave stress tensor is 

T m n  = c&p' - S,, L. (27 1 
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Bretherton (1 969) has discussed the physical interpretation of the off-diagonal 
components of this stress tensor from a particle point of view. Consider a surface 
element originally normal to the n-axis. Under the action of the wave this surface 
is moved about and tilted; the pressure on a tilted surface exerts a net force on this 
surface in the rn direction. The wave-stress tensor arises from the correlation of 
tilt and pressure fluctuations. For an interpretation of the diagonal components 
see Jones (1971). Tmn is not necessarily symmetric. 

The wave-spin density is 

and is simply the cross product of particle displacement and particle velocity. 
Consider a particle moving in an elliptical orbit. Ifwe average the angular momen- 
tum of this particle about some arbitrary origin, we obtain a net angular momen- 
tum corresponding to Smnt;  it is independent of the position of the origin and thus 
is spin-like. The particle has no average linear momentum, and hence no mean 
orbital angular momentum if the latter is taken as the moment of mean linear 
momentum. It is in this sense that we can speak of the spin of an averaged 
system which has no inherent polar character. 

The wave-spin flux is 

Consider an element of surface originally normal to the n axis. As this is shifted 
about by the wave motion it may undergo m displacement. If at positive 5" 
the pressure perturbation is positive and vice versa, the integrated force across the 
element produces a net torque on the fluid beyond it. 

Now consider the wave torque 

but - gp' is the buoyant force per unit volume acting in the z direction, and hence 
Gzz is the moment of this force. That is, gp' is the net rate at which momentum 
is lost from a particle of unit volume to the earth, and if fluctuations in this 
quantity correlate with lateral position, there is a net torque exerted on the earth, 

For a uniform periodic wave, the left-hand side of (17) vanishes and we have 

(33) Tmn - Trim = Gmn. 

Thus the change in orbital angular momentum of a fluid induced by a wave 
packet carrying momentum not collinear with its group velocity is balanced by 
transfer of angular momentum outside the fluid, in this case to the earth. 
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4. Waves in rotating systems 
We shall drop the effects of buoyancy and include those of an angular velocity 

8 of the system. This can be done in the usual meteorological approximation 
including Coriolis forces, but neglecting centrifugal forces (Hayes 1970). 

L = $PEG- 8Pa2G:: + PEarsEqGQS, (34) 

where erqsG Qs = (gt x a)'. (35) 

p& + ap'jaxr - erqs 2 g  Q S  = 0. (36) 

The wave-stress tensor and the wave-spin flux are unaltered by rotation, and are 
given by (27) and (29). The wave-spin density has an added term: 

(37) 

If the system rotates about the z axis, the added term contributes to SXut and is 

PQ2(:zEx+f%Y. (38) 

The Euler-Lagrange equations are 

Xmnt = Imni jp[pg + ekjap[Qq.  

A displacement in a rotating system would be viewed as a change in velocityfrom 
an inertial system. The added term evidently is the correlation of displacement 
with this additional velocity perturbation. A related additional term appears 
in an Eulerian interpretation of momentum flux as the advection of momentum 
by velocity perturbations (Jones 1971). 

The wave torque is 

Gmn = Imnii - S E k )  Qz. (39) 

GXy = 0,  (40) 

Again considering rotation about the z axis, 

The wave torque is equal to the cross product of wave-spin density and system 
angular velocity. This is an apparent torque in the same sense that Coriolis forces 
are apparent forces. Consider a gyroscope rotating about a horizontal axis, while 
mounted on a plane rotating about a vertical axis. In  the absence of any forces, 
the gyroscope will remain aligned with an inertial axis, but will appear to rotate 
in the rotating co-ordinate system. There will be an apparent transfer between 
x-2 and y-z angular momenta. 

Sound waves propagating with both vertical and horizontal components in 
such a system have asymmetric stress tensors. On the other hand, sound waves 
travelling along or transverse to the axis of rotation have 

(43) Gmn = 0, 

and hence have symmetric stress tensors. 
Our equations for wave stress tensors and wave spin tensors are valid in the 
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limit a -+ 00, as they are expressed in terms of perturbation pressures and dis- 
placements, thus they are valid for non-divergent Rossby waves computed on a 
,&plane where Q is a linear function of y. In  this case 

It has been shown (Longuet-Higgins 1964; Buchwalder 1972) that if such 
waves propagate obliquely in the x, y plane their group and phase velocities are 
not collinear, and hence that 

= 0. 

Tzv - Tvz B 0. (44) 

There are no external torques to balance the changes of orbital angular momen- 
tum brought about by such a wave. Instead, we note that Sxvt is a function of Q, 
and as a packet moves in the y direction, the spin associated with it varies, 
compensating for the changes in orbital angular momentum. In  a time-periodic 
Rossby wave there will be y divergence of wave spin flux if there is a y component 
of group velocity. 

5. Plasma waves 
We now derive the spin relationships for electromagnetic radiation in a cold 

collisionless plasma with one mobile ion species. We shall assume a mean ma’g- 
netic field B and perturbations in the following quantities: A = vector potential, 
q5 = scalar potential and E, = plasma displacement, from which we can derive 
perturbations in the electric field intensity 

E = -v.gl-c-laA/at, 
magnetic field intensity 

current density 
H = V x A ,  

J = pem-lE,,, 

and electric charge density 

pe = -pem-lV. E,, (48) 

where pe = ion mass density, e = ion charge, m = ion mass and c = speed of 
light. 

The variational principle for electromagnetic radiation is normally developed 
in Lorentz co-ordinates, where x4 = ict rather than t .  We define the four-vectors 

V ” = A ” ,  In=  Jn  , v4 = iq5, 14 = icpe (49) 

and the four-tensor 
f”” = V” - v;. P 

The wave Lagrangian density is 

The Euler-Lagrange equations which follow from (51) are 
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- c2ptE = - ipe ,-I[ ( F'y - V$) - cqnqS @ Bs]. 

ptg = pem-l [Em + (p, x B)m] .  

745 

which are Maxwell's equations, and 

(53) 

In  real space-time co-ordinates, the latter equation becomes 

(54 )  

This equation expresses the acceleration of the plasma in response to electric 
and magnetic fields. 

The wave-stress tensor for the entire system is 

(55 )  
Tmn = --(V&V;- 1 V,")-@&V4-8rtnL. 

477 m 

We can write the mean of Tmn in more familiar terms. One can show that (Morse 
& Feshbach 1953, p. 329) 

1 1 
-( V& v; - V!) = - G(f""f"> + ;( V m P )  

where we denote averaging by angular brackets. The last term of (56) becomes 
zero on averaging over a periodic wave. Similarly, 

and the average of L is zero. Thus 

But 
- i ( V r -  V k )  = Em (59) 

and = 4nPm, (60) 

where P is the electric polarization. As the electric displacement D is given by 

D = E+P, 

T m n  = ( ~ T ) - ~ ( E " D "  + HmHn). 
we can show that 

The wave-stress tensor is asymmetric when D and E are not collinear, that is to 

The wave spin tensor has components 
say, when the tensor dielectric coefficient of the system has off-diagonal terms. 
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The first component of spin density in (63) represents the effect of elliptical 
particle orbits. The second represents the angular momentum density of electro- 
magnetic radiation in vacuo. Circularlypolarizedradiation has an angularmomen- 
tum density equal to the radiation energy density divided by wave frequency, 
and having the same sense of rotation as the electric and magnetic field vectors 
(Crawford 1965). We have not attempted to interpret the remaining terms, except 
to note that the final term is analogous to that of a rotating system. The cyclo- 
tron frequency peB/rn is equivalent to the rotation frequency 0. 

The wave torque is 

Gmn = Imnij icpeBsrn-l ejkS(Ctk - [ i t k )  
- - Imnijejks(CJk- tkJi)  BS. 

If the magnetic field is in the x direction, 

and 

But [“JZ- PJY is simply a component of the magnetic moment created by motion 
of the charged plasma particles in elliptic orbits, and the wave torque is simply 
the cross-product of the wave magnetic moment with the mean magnetic field. 
Thus it is possible for a wave to couple angular momentum to the mean magnetic 
field, and ultimately back to the sources of this field. 

6. Conclusions 
We have shown through a number of examples that asymmetric wave-stress 

tensors are not inconsistent with the interpretation of the wave-stress tensor 
a8 the negative of a momentum flux. The quadratic quantities wave-spin density, 
wave-spin flux, and wave torque generally have simple and straightforward 
physical interpretations. This is not to say that they can be related to the total 
momentum budgets of a nonlinear system, only that such budgets may be drawn 
up consistently with the linearized equations for waves. 

Conservation of angular momentum can be related through Noether’s theorem 
-to invariance of the Lagrangian density to infinitesimal rotations (Bogoliubov 
& Shirkov 1959). The examples we have discussed all involve symmetry about an 
axis defined by the gravitational force, rotation or the alignment of a magnetic 
field. As in each case our Lagrangian is invariant to rotation about the axis of 
symmetry, we find that angular momentum about this axis is conserved. This 
principle should hold for nonlinear as well aslinearized systems ; we anticipate that 
conservation of angular momentum about an axis of symmetry also should hold 
for resonant wave interactions and turbulence. 
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